Optimal design of CMAC neural-network controller for robot manipulators
نویسندگان
چکیده
This paper is concerned with the application of quadratic optimization for motion control to feedback control of robotic systems using cerebellar model arithmetic computer (CMAC) neural networks. Explicit solutions to the Hamilton–Jacobi–Bellman (H–J–B) equation for optimal control of robotic systems are found by solving an algebraic Riccati equation. It is shown how the CMAC’s can cope with nonlinearities through optimization with no preliminary off-line learning phase required. The adaptive-learning algorithm is derived from Lyapunov stability analysis, so that both system-tracking stability and error convergence can be guaranteed in the closed-loop system. The filtered-tracking error or critic gain and the Lyapunov function for the nonlinear analysis are derived from the user input in terms of a specified quadratic-performance index. Simulation results from a two-link robot manipulator show the satisfactory performance of the proposed control schemes even in the presence of large modeling uncertainties and external disturbances.
منابع مشابه
Adaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملKinematics Control of Redundant Manipulators Using CMAC Neural Network
The inverse kinematics problems of redundant manipulators have been investigated for many years. The conventional method of solving this problem analytically is by applying the Jacobian Pseudoinverse Algorithm. It is effective and able to resolve the redundancy for additional constraints. However, its demand for computational effort makes it not suitable for real-time control. Recently, neural ...
متن کاملFuzzy Sliding Mode Controller with CMAC Application Rigid Robot Manipulators
In this paper to address a signed distance fuzzy sliding-mode control (SDFSMC) architecture which integrates cerebellar model articulation controller (CMAC). The proposed control consists of the SDFSMC and a feedforward compensation with modify CMAC network which to control the dynamics of the nonlinear systems with unknown structured nonlinearities without requiring a priori knowledge of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Systems, Man, and Cybernetics, Part C
دوره 30 شماره
صفحات -
تاریخ انتشار 2000